3.1.100 \(\int \sec ^3(c+d x) (a+a \sec (c+d x))^{3/2} \, dx\) [100]

3.1.100.1 Optimal result
3.1.100.2 Mathematica [A] (verified)
3.1.100.3 Rubi [A] (verified)
3.1.100.4 Maple [A] (verified)
3.1.100.5 Fricas [A] (verification not implemented)
3.1.100.6 Sympy [F]
3.1.100.7 Maxima [F]
3.1.100.8 Giac [F]
3.1.100.9 Mupad [B] (verification not implemented)

3.1.100.1 Optimal result

Integrand size = 23, antiderivative size = 116 \[ \int \sec ^3(c+d x) (a+a \sec (c+d x))^{3/2} \, dx=\frac {152 a^2 \tan (c+d x)}{105 d \sqrt {a+a \sec (c+d x)}}+\frac {38 a \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{105 d}-\frac {4 (a+a \sec (c+d x))^{3/2} \tan (c+d x)}{35 d}+\frac {2 (a+a \sec (c+d x))^{5/2} \tan (c+d x)}{7 a d} \]

output
-4/35*(a+a*sec(d*x+c))^(3/2)*tan(d*x+c)/d+2/7*(a+a*sec(d*x+c))^(5/2)*tan(d 
*x+c)/a/d+152/105*a^2*tan(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+38/105*a*(a+a*se 
c(d*x+c))^(1/2)*tan(d*x+c)/d
 
3.1.100.2 Mathematica [A] (verified)

Time = 0.18 (sec) , antiderivative size = 60, normalized size of antiderivative = 0.52 \[ \int \sec ^3(c+d x) (a+a \sec (c+d x))^{3/2} \, dx=\frac {2 a^2 \left (104+52 \sec (c+d x)+39 \sec ^2(c+d x)+15 \sec ^3(c+d x)\right ) \tan (c+d x)}{105 d \sqrt {a (1+\sec (c+d x))}} \]

input
Integrate[Sec[c + d*x]^3*(a + a*Sec[c + d*x])^(3/2),x]
 
output
(2*a^2*(104 + 52*Sec[c + d*x] + 39*Sec[c + d*x]^2 + 15*Sec[c + d*x]^3)*Tan 
[c + d*x])/(105*d*Sqrt[a*(1 + Sec[c + d*x])])
 
3.1.100.3 Rubi [A] (verified)

Time = 0.68 (sec) , antiderivative size = 131, normalized size of antiderivative = 1.13, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {3042, 4287, 27, 3042, 4489, 3042, 4280, 3042, 4279}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^3(c+d x) (a \sec (c+d x)+a)^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^3 \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}dx\)

\(\Big \downarrow \) 4287

\(\displaystyle \frac {2 \int \frac {1}{2} \sec (c+d x) (5 a-2 a \sec (c+d x)) (\sec (c+d x) a+a)^{3/2}dx}{7 a}+\frac {2 \tan (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 a d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \sec (c+d x) (5 a-2 a \sec (c+d x)) (\sec (c+d x) a+a)^{3/2}dx}{7 a}+\frac {2 \tan (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \csc \left (c+d x+\frac {\pi }{2}\right ) \left (5 a-2 a \csc \left (c+d x+\frac {\pi }{2}\right )\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}dx}{7 a}+\frac {2 \tan (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 a d}\)

\(\Big \downarrow \) 4489

\(\displaystyle \frac {\frac {19}{5} a \int \sec (c+d x) (\sec (c+d x) a+a)^{3/2}dx-\frac {4 a \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d}}{7 a}+\frac {2 \tan (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {19}{5} a \int \csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}dx-\frac {4 a \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d}}{7 a}+\frac {2 \tan (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 a d}\)

\(\Big \downarrow \) 4280

\(\displaystyle \frac {\frac {19}{5} a \left (\frac {4}{3} a \int \sec (c+d x) \sqrt {\sec (c+d x) a+a}dx+\frac {2 a \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\right )-\frac {4 a \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d}}{7 a}+\frac {2 \tan (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {19}{5} a \left (\frac {4}{3} a \int \csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {2 a \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\right )-\frac {4 a \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d}}{7 a}+\frac {2 \tan (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 a d}\)

\(\Big \downarrow \) 4279

\(\displaystyle \frac {\frac {19}{5} a \left (\frac {8 a^2 \tan (c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}+\frac {2 a \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\right )-\frac {4 a \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d}}{7 a}+\frac {2 \tan (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 a d}\)

input
Int[Sec[c + d*x]^3*(a + a*Sec[c + d*x])^(3/2),x]
 
output
(2*(a + a*Sec[c + d*x])^(5/2)*Tan[c + d*x])/(7*a*d) + ((-4*a*(a + a*Sec[c 
+ d*x])^(3/2)*Tan[c + d*x])/(5*d) + (19*a*((8*a^2*Tan[c + d*x])/(3*d*Sqrt[ 
a + a*Sec[c + d*x]]) + (2*a*Sqrt[a + a*Sec[c + d*x]]*Tan[c + d*x])/(3*d))) 
/5)/(7*a)
 

3.1.100.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4279
Int[csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*b*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]])), x] /; Free 
Q[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4280
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_ 
Symbol] :> Simp[(-b)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m - 1)/(f*m)), x] 
+ Simp[a*((2*m - 1)/m)   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m - 1), x], 
 x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] && Intege 
rQ[2*m]
 

rule 4287
Int[csc[(e_.) + (f_.)*(x_)]^3*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), 
x_Symbol] :> Simp[(-Cot[e + f*x])*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2 
))), x] + Simp[1/(b*(m + 2))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*(b*( 
m + 1) - a*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f, m}, x] && EqQ[a^2 - 
b^2, 0] &&  !LtQ[m, -2^(-1)]
 

rule 4489
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(cs 
c[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]*(( 
a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Simp[(a*B*m + A*b*(m + 1))/(b*(m + 
 1))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B 
, e, f, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b 
*(m + 1), 0] &&  !LtQ[m, -2^(-1)]
 
3.1.100.4 Maple [A] (verified)

Time = 0.83 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.63

method result size
default \(\frac {2 a \left (104 \cos \left (d x +c \right )^{3}+52 \cos \left (d x +c \right )^{2}+39 \cos \left (d x +c \right )+15\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \tan \left (d x +c \right ) \sec \left (d x +c \right )^{2}}{105 d \left (\cos \left (d x +c \right )+1\right )}\) \(73\)

input
int(sec(d*x+c)^3*(a+a*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 
output
2/105/d*a*(104*cos(d*x+c)^3+52*cos(d*x+c)^2+39*cos(d*x+c)+15)*(a*(1+sec(d* 
x+c)))^(1/2)/(cos(d*x+c)+1)*tan(d*x+c)*sec(d*x+c)^2
 
3.1.100.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.75 \[ \int \sec ^3(c+d x) (a+a \sec (c+d x))^{3/2} \, dx=\frac {2 \, {\left (104 \, a \cos \left (d x + c\right )^{3} + 52 \, a \cos \left (d x + c\right )^{2} + 39 \, a \cos \left (d x + c\right ) + 15 \, a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{105 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}} \]

input
integrate(sec(d*x+c)^3*(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")
 
output
2/105*(104*a*cos(d*x + c)^3 + 52*a*cos(d*x + c)^2 + 39*a*cos(d*x + c) + 15 
*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/(d*cos(d*x + c)^4 
 + d*cos(d*x + c)^3)
 
3.1.100.6 Sympy [F]

\[ \int \sec ^3(c+d x) (a+a \sec (c+d x))^{3/2} \, dx=\int \left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}} \sec ^{3}{\left (c + d x \right )}\, dx \]

input
integrate(sec(d*x+c)**3*(a+a*sec(d*x+c))**(3/2),x)
 
output
Integral((a*(sec(c + d*x) + 1))**(3/2)*sec(c + d*x)**3, x)
 
3.1.100.7 Maxima [F]

\[ \int \sec ^3(c+d x) (a+a \sec (c+d x))^{3/2} \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{3} \,d x } \]

input
integrate(sec(d*x+c)^3*(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")
 
output
8/105*(105*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 
 1)^(3/4)*(3*(a*d*cos(2*d*x + 2*c)^2 + a*d*sin(2*d*x + 2*c)^2 + 2*a*d*cos( 
2*d*x + 2*c) + a*d)*integrate((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2 
*cos(2*d*x + 2*c) + 1)^(1/4)*(((cos(8*d*x + 8*c)*cos(2*d*x + 2*c) + 3*cos( 
6*d*x + 6*c)*cos(2*d*x + 2*c) + 3*cos(4*d*x + 4*c)*cos(2*d*x + 2*c) + cos( 
2*d*x + 2*c)^2 + sin(8*d*x + 8*c)*sin(2*d*x + 2*c) + 3*sin(6*d*x + 6*c)*si 
n(2*d*x + 2*c) + 3*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + sin(2*d*x + 2*c)^2) 
*cos(5/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + (cos(2*d*x + 2*c)* 
sin(8*d*x + 8*c) + 3*cos(2*d*x + 2*c)*sin(6*d*x + 6*c) + 3*cos(2*d*x + 2*c 
)*sin(4*d*x + 4*c) - cos(8*d*x + 8*c)*sin(2*d*x + 2*c) - 3*cos(6*d*x + 6*c 
)*sin(2*d*x + 2*c) - 3*cos(4*d*x + 4*c)*sin(2*d*x + 2*c))*sin(5/2*arctan2( 
sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(3/2*arctan2(sin(2*d*x + 2*c), co 
s(2*d*x + 2*c) + 1)) - ((cos(2*d*x + 2*c)*sin(8*d*x + 8*c) + 3*cos(2*d*x + 
 2*c)*sin(6*d*x + 6*c) + 3*cos(2*d*x + 2*c)*sin(4*d*x + 4*c) - cos(8*d*x + 
 8*c)*sin(2*d*x + 2*c) - 3*cos(6*d*x + 6*c)*sin(2*d*x + 2*c) - 3*cos(4*d*x 
 + 4*c)*sin(2*d*x + 2*c))*cos(5/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2* 
c))) - (cos(8*d*x + 8*c)*cos(2*d*x + 2*c) + 3*cos(6*d*x + 6*c)*cos(2*d*x + 
 2*c) + 3*cos(4*d*x + 4*c)*cos(2*d*x + 2*c) + cos(2*d*x + 2*c)^2 + sin(8*d 
*x + 8*c)*sin(2*d*x + 2*c) + 3*sin(6*d*x + 6*c)*sin(2*d*x + 2*c) + 3*sin(4 
*d*x + 4*c)*sin(2*d*x + 2*c) + sin(2*d*x + 2*c)^2)*sin(5/2*arctan2(sin(...
 
3.1.100.8 Giac [F]

\[ \int \sec ^3(c+d x) (a+a \sec (c+d x))^{3/2} \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{3} \,d x } \]

input
integrate(sec(d*x+c)^3*(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")
 
output
sage0*x
 
3.1.100.9 Mupad [B] (verification not implemented)

Time = 17.84 (sec) , antiderivative size = 346, normalized size of antiderivative = 2.98 \[ \int \sec ^3(c+d x) (a+a \sec (c+d x))^{3/2} \, dx=-\frac {\left (\frac {a\,16{}\mathrm {i}}{7\,d}+\frac {a\,{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,16{}\mathrm {i}}{7\,d}\right )\,\sqrt {a+\frac {a}{\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}}}{\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}+1\right )\,{\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1\right )}^3}+\frac {\left (\frac {a\,8{}\mathrm {i}}{3\,d}-\frac {a\,{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,104{}\mathrm {i}}{105\,d}\right )\,\sqrt {a+\frac {a}{\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}}}{\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}+1\right )\,\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1\right )}+\frac {\left (\frac {a\,8{}\mathrm {i}}{5\,d}+\frac {a\,{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,184{}\mathrm {i}}{35\,d}\right )\,\sqrt {a+\frac {a}{\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}}}{\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}+1\right )\,{\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1\right )}^2}-\frac {a\,{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,\sqrt {a+\frac {a}{\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}}\,208{}\mathrm {i}}{105\,d\,\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}+1\right )} \]

input
int((a + a/cos(c + d*x))^(3/2)/cos(c + d*x)^3,x)
 
output
(((a*8i)/(3*d) - (a*exp(c*1i + d*x*1i)*104i)/(105*d))*(a + a/(exp(- c*1i - 
 d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2))/((exp(c*1i + d*x*1i) + 1)*(exp( 
c*2i + d*x*2i) + 1)) - (((a*16i)/(7*d) + (a*exp(c*1i + d*x*1i)*16i)/(7*d)) 
*(a + a/(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2))/((exp(c*1i 
 + d*x*1i) + 1)*(exp(c*2i + d*x*2i) + 1)^3) + (((a*8i)/(5*d) + (a*exp(c*1i 
 + d*x*1i)*184i)/(35*d))*(a + a/(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1 
i)/2))^(1/2))/((exp(c*1i + d*x*1i) + 1)*(exp(c*2i + d*x*2i) + 1)^2) - (a*e 
xp(c*1i + d*x*1i)*(a + a/(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^ 
(1/2)*208i)/(105*d*(exp(c*1i + d*x*1i) + 1))